Exercise 30

Use algebra to find the point at which the line $f(x)=-\frac{4}{5} x+\frac{274}{25}$ intersects the line $h(x)=\frac{9}{4} x+\frac{73}{10}$.

Solution

At the point of intersection, the two functions are equal.

$$
\begin{aligned}
f(x) & =h(x) \\
-\frac{4}{5} x+\frac{274}{25} & =\frac{9}{4} x+\frac{73}{10}
\end{aligned}
$$

Solve for x.

$$
\begin{gathered}
\frac{274}{25}-\frac{73}{10}=\frac{9}{4} x+\frac{4}{5} x \\
\frac{61}{20} x=\frac{183}{50} \\
x=\frac{183}{50} \times \frac{20}{61}=\frac{6}{5}
\end{gathered}
$$

Now plug this value of x into either of the functions to get the corresponding y-value.

$$
f\left(\frac{6}{5}\right)=-\frac{4}{5}\left(\frac{6}{5}\right)+\frac{274}{25}=10
$$

Therefore, the point of intersection is $\left(\frac{6}{5}, 10\right)$.

